New Representations of the Perturbative S Matrix.

نویسندگان

  • Christian Baadsgaard
  • N E J Bjerrum-Bohr
  • Jacob L Bourjaily
  • Simon Caron-Huot
  • Poul H Damgaard
  • Bo Feng
چکیده

We propose a new framework to represent the perturbative S matrix which is well defined for all quantum field theories of massless particles, constructed from tree-level amplitudes and integrable term by term. This representation is derived from the Feynman expansion through a series of partial fraction identities, discarding terms that vanish upon integration. Loop integrands are expressed in terms of "Q-cuts" that involve both off-shell and on-shell loop momenta, defined with a precise contour prescription that can be evaluated by ordinary methods. This framework implies recent results found in the scattering equation formalism at one loop, and it has a natural extension to all orders--even nonplanar theories without well-defined forward limits or good ultraviolet behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

On minimal degrees of faithful quasi-permutation representations of nilpotent groups

By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....

متن کامل

Balanced Truncation of Perturbative Representations of Nonlinear Systems

The paper presents a novel approach for a balanced truncation style of model reduction of a perturbative representation of a nonlinear system. Empirical controllability and observability gramians for nonlinear systems are employed to define a projection matrix. However, the projection matrix is applied to the perturbative representation of the system rather than directly to the exact nonlinear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 116 6  شماره 

صفحات  -

تاریخ انتشار 2016